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ABSTRACT 

Steinberg, Abraham Heir, Ph.D., Purdue University, August, 1967. 
Minbma Sensit ivity O p t i m a l  Control for Nan-Linear Systems. 
Professor: Violet B. Haas. 

Major 

Relaxed Vsriational Techniques are applied t o  a minimum sens i t iv i ty  

control problem, 

t ions i n  i n i t i a l  conditions. 

Sensit ivity of a t ra jectory lis minimized t o  perturba- 

Rather than using the optimal control that  

does indeed ex is t  and that satisfies the f i n d  conditions exactly, a 

sub-optimal control is used t h a t  t ransfers  the system f”rm the given 

i n i t i a l  s t a t e  t o  an arb i t ra r i ly  s m a l l  neighborhood of the given final 

state, and that results i n  a considerably better performance than the 

optimal solution. 

optimal controls of the relaxed problem. 

The sub-optimal control is constructed using the 

It is demonstrated by an example that a sub-optimal chattering con- 

t r o l  obtained for a minimum time problem can be made a function of the 

states of the system and thus lower sens i t iv i ty  t o  perturbations i n  

i n i t i a l  s ta tes  i s  achieved as well as minimum t i m e ,  

A relation i s  shown t o  exist  between relaxed problems and singular 

control. 

solution, but s a t i s f i e s  some general assumptions, has a singular 

It i s  shown that a problem that  does not possess an optimal 

relaxed solution. 



1.1 Motivation 

In optimal control problems the Haximum Principle gives necessary 

conditions fo r  the optimal control and traJectories [Pontryagin et al, 

ref 1, Berkovitz ref. 2) The different ia l  equations representing the 

necessary conditione are derived on the assumption tha t  an opt- solu- 

t ion  does indeed exist. However, except for very special classes of 

problems, existence of optimal solutions is not gueranteqd. It we8 

shown recently [Warge ref. 31, under some general assumptions tha t  for 

control problems that do not possess an optimal solution it is posrribae 

t o  construct a sub-optimal solution, 

perfonnance index by N, then the sub-optimal solution will result i n  a 

performance index as close t o  IV as desired. The sub-ogtimsl control 

will transfer the system from the given i n i t i a l  s t a t e  t o  an arb i t ra r i ly  

small neighborhood of the given final state .  

tha t  if ffnal conditions ere specified fo r  the system a t  the terminel 

time and an optimal control does indeed exis t  for  the problem, it might 

be possible by mlextng the end conditions t o  obtain a sub-optimal con- 

Denote the lower bound on the 

Rarthennore it was sham 

t r o l  tha t  would result i n  a considerably better per fomnce  then the 

Optfpalo 
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A general class of non-linear systems where the control is coup- 

led with the  s t a t e  variables i s  treated here. 

fer the given i n i t i a l  s t a t e  t o  the given f i n a l  s t a t e  minimizing an 

expreesion that describes s e n s i t i d t y  of the  response of the system 

with respect t o  perturbations i n  i n i t i a l  conditions. 

1% l e r  desired t o  trans- 

For such a problem it i s  possible, by relaxing the final conditions 

for  the problem, t o  obtain a substantial  imprmement i n  the perfor- 

mance of the system, Rather than using the optimal control tha t  deea 

iqdeed exist and tha t  satierfPes the f i n a l  conditions exactly, one can 

use a sub-optimal control tha t  would t ransfer  the system from the 

given i n i t i a l  s t a t e  t o  an a rb i t ra r i ly  smal l  neighborhood of the given 

f lna l  s ta te ,  and tha t  results i n  a considerably be t te r  performance 

than the optimal solution. 

where it i s  not essent ia l  t o  sa t i s fy  the f lnal  conClitions exactly. 

This approach i s  beneficial  for  problems 

It is shown tha t  the approach mentioned above applies t o  systems 

where %tabilizing Signal" coldenburger ref. 51 can be used for  s ta-  

bi l izat ion or improvement of system perfomence. 

1.2 State  of A r t  

1.2 J. Relaxed Variational Problems 

Relaxed variational problems were introduced by Gamkrelidze Lref. 

63 and were discussed in de ta i l  by Warga [ref. 31 and by Krotov [ref. 

73. The discussions are mainly theoret ical  and are  restricted t o  the 

proof of theorems on relaxed problems. 

One application of relaxed variational problems t o  an engineering 

problem was given by GuPmen [ref 81. The problem discussed is  tha t  

of a coasting airplane tha t  i s  t o  be transfered from i n i t i a l  t o  f inal  

1 
1 
1 
I 
I 
1 
a 
a 
I 
1 
I 
I 
I 
I 
I 
I 
1 
I 
I 
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conditions i n  minimum time. I t  i s  shown tha t  i n  order t o  sa t i s fy  a 

certain constraint on the s ta te  variables, a chattering control i s  the 

accepted sub-optimal control e 

To the best  of the author's knowledge no other applications were 

made of relaxed controls to  engineering problems. 

1.2.2 Minimum Sensitivity Optimal Control 

Classical sensi t ivi ty  has recently been employed by Dorato [ref. 91 

who discussed the sensi t ivi ty  of the performance index i n  the optimal 

control problem with respect t o  plant parameter variations. A method 

was outlined for  computing the performance in&ex sensi t ivi ty  f’tmctions. 

This w i l l  be discussed i n  Chapter Three. 

Further resu l t s  were obtained by Pagurek [ref .  101 through the use 

of the Hamilton-Jacobi equation. 

performance indices it was shown that the  performance index sens i t iv i ty  

For l inear  systems w i t h  quadratic 

Arnctions for  the open loop case and for the closed loop case are iden- 

t i c a l .  Witsenhausen [ref 111 extend.ed Pagurek’ s resul ts  t o  non-linear 

problems. 

obtained his  resu l t s  by considering inf in i tes imd variations i n  the 

It was l a t e r  shown by Sinha and Atluri  [ ref .  121 tha t  Pagurek 

system pmameters. They showed f’urther tha t  i f  amall  but f in i te  varia- 

t ions axe used, the closed loop configuration might be superior. 

A new definit ion of relative sensftivfty i n  optimal control pro- 

blems was introduced by Rohrer and SobraP [ref * 131. 

Sensit ivity of terminal conditions t o  parameter variations was 

examiied by Holtzman and Horing [ref .  141 e Inclusion of specification 
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stratetL It is rshown in Chapter 3 of this theeis  th& the reaul te  ob- 

tained by Holtzman and Boring are afsle.ding beeruere of the f ac t  that  

aenei t ivi ty  v m  deflned for f i n i t e  variatioqe i n  the parameter, and 

replaced by infinitesimal variations 

Bieeaaen [ref, 151 deaJs with the problem of esrlurtinlg the meat 

t o  which sysCem parametere may be ellaaged and s%iU guarantee th r t  

103 Stateaunt of the Problem 

We consider the system of equations 

s = f(x,toa) 

w$th initial conditions 
0 xQQ) = x 

where x %e m (n-1) rector 

We llirh%Jdt befins the  rseneftfvfty E? of the plat t o  i n i t i a l  
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dieturbmces by the r e h t i o n  

S = 8(t)  = f fo(x,t,ta) d t  

0 

5 

where fo(x,t,u) i s  a scalar function. 

add the equation 

We shall denote S ( t )  by xo(t)  and 

li 0 = fo(x,t,u) (1.5) 

t o  system (1.1). 

It i s  desired t o  minidzca x0(T). Equations (1.1) may represent 

plant equt ionea constraint equations ernd perturbation equations, 

The vector f 88 well &B the scalar fo may be nonlinear f”unetfon8 

of any or all of the i r  variables. 

solution 00 this problem existee 

asaarad to have a lower bound d. 

I n  this  case it may occur tha t  no 

The performace fndsx x,(T)~wiU. be 

However, it may happen that there is 

no &ssible control f o r  which the performance index is J. 

the value J may be approximated a8 closely tu desired by appropriate 

However, 

choice of u ( t )  under rather general conclftions, as wXLL be demonstrated 

below.. \It Will also be shown that  i n  numy cases a perfarmancb index 

rohich i a r  aansiderably smaller than J ean be obtained by eatfsf+y3ng 

equations (1.3) only approxianately. 

oontrol u = u ( t )  for which u(t) assulpea only a f in i te  number of values. 

This w i l l  be done by designing a 

A control belonging to U will be termed “suboptimal” i f  it trans- 

fer8 the i n i t i a l  state t o  a small neighborhood of *he terminal manifold 

while reducing the sensit ivity xo(T) t o  a value close to J or lower. 

An f neighborhood of the manifold D is  the se t  of points tha t  contains 

D and all points that  axe at post at a distance E P r a  the manifold. 

We shall make the following continuity and boundedness assumptions 
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throtlgh0u-b this thesis .  There exfetkl eilz open set V in  Euclidean n 

1.4 Organization of the Thesis 

Chapter 2 begins with a afecnarisn ef BeSaxeil Variational Problem. 

We show that when probXema that do not posssea optisal so1UtiOna are 

1 

relaxedo they become sfngnlar. Senslftivfty considerations i n  claseioal  



and gPtW control are Inaludled in Chapter 3. Zero aenritfvity for 

the l;iterarture are Biscaased. I O  is ahown that deflnftions of eensi- 

tivity for inflniteefral  variations m y  le& t o  erroneou8 resultao 

feedbaok control. In the other exaargle relaxed variational techniques 

are applied to the cmstrrroflon of P sub-optfrrral. rpaatrol t o  minimize 

senritlrlty of a trajectory to perturbatime in  fiafQial osbndit%ans. 
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We shall introduce the "relaxed problem*' for problq (1.1) Let 

B(x,t) be chs ctonvex elomre, or the OOI~VCIL hal% of the c 1 ~ 1 x u - e ~  of 

F(x,t). The relaxed problem conasislts in 8Snimiaing x,(T) sabgect to  

The problem i s  relaxed i n  the sense that the psrmiri3fbBe set  of 

choices Of f(t) is @llh?ged froar F(x9P,) to e ( X 9 t ) e  

Define the relaxed system of equations for equations (lel)e 
n+l 

where C is a subset of the set of meLsWabfe f%ncti6nB9 

v+ 

and each g (x) i s  independen% of xoo d 
A "relaxed aaglissible e m "  i s  defined 88 my absdlutely continu- 

The following theorems are given by Warga [ref, 3 j0  
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-.. . .  

Thesrem I. If the  veoimr functions f (x , t ,u)  of equation (1.1) aqt~ the 

eaalar function io of equation (1.5) satism e m a t i o n s  I -V  of section 

1.3 of this thesis, then every absolutely conthusus curve x ( t ) ,  satis- 

fylng equation (2.3) i s  the uniform l i m i t  of curves %(t)# B P 1, 2,,.., 

satiefying differentid.  equations (1.1) and ( l 0 5 ) ‘ d  such that 

%(O) = x(o), I = 1, 2, o e e  0 

Theorem II. If f (x , t ,u )  and fo(xstDu) pratirf‘g the masumptiom of 

Theorem1 and i f  there exis ts  a rebcuced adaflssible curveo then there 

ex is ts  a relaxed Plinhhing curve. 

Theorea III. Let f(x,t ,u) and fQ(xPt ,u)  eat;isf+y the assumptime of 

TheoreJirr I and Pet  B = EnO 

mizing curve x( t ) .  

Aesuaua tha t  *ere exists an or$.&ml m i n i -  

Then x( t )  is also a relaxed lafniPsieing cum.  

TheorePa I11 does not, in  general., r w n  v a i d  when the sseuhption 

B P En i s  dropped. 

exanrple, exasple 2*18 [Wasga, ref, 31, and O s i l l  be de~aonstrateil l a t e r  

T h h  is demonstrated by the  foXLuwing counter- 

again by example 4 2  ,, 

(2.5) 

and therefore u(t) = 0. 

The relaxed problem is 

1 
1 
1 
I 
1 
I 
1 
1 
I 
I 
I 
I 
1 
1 
1 
I 
1 
I 



2 - T2 (14) u2 a 5 = =2 

IC 
X = X  3 2  

4 2 = x  3 2  
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i I Is o a o 9  n t l  were found for the relaxed problem. 'phe suboptimal 

aantrol for the original problea i s  conlstructed aa follows. Divide 

the time i n t e r n  [o,T] into zuz arbitrary nunibar II of equal subintsrr~, 

Deaote the bQBinniw of the! first interval by to, the en4 of the firat 

interval by tns end of recon& intermit by tp snd end of Bth interval by 

$rery interval [%s tWl] ire divided into (n+l) subintervals; the 
* 

length of the 3 t h  subinterval shaU be a (%) [tkgl - $1 for 

j = lp n+lo A t  the j%h aubint03.mil. the control, u ( ) i s  applied. 

As IR amoaches inf inityo the tra3eobry deaeribed by the origiaal 

By8tm w i l l  approach the o p t M  trsgeohrg of the relaxed system and 

:% 

the performance index of the origfnal problea will approeah the per- 

formauce index of %he relexed problemo 

204 Solrfn~ t?m Relaxed Problem 

Given aplant 

ii = f(x,t,a) 

Prinoiple gives neaeseary amititions for the opt- conltrol and 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
I 
I 
1 
1 
I 
I 
1 
1 
I 



trajectoryo Define the Hamiltonian 

E - < A ,  f(x,t ,u) 3 

and 

(2.16) 

d J  
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H = A,  G(x,t,a *U ) > 3 3  
. .  

then 

(2.18) 

(2.19) 
i a -5 

i f  A. > 0 
* *  

H(h,x,t,a u 1 = Hin ~H(hsx , t , a r jPuJ)~  j-l,...sn+l (2.20) 

9 3 ’ 3  

It foUawpr f”raa (2.12), ( 2 ~ 6 ) ~  (2.18) and (2.20) t ha t  erary m e  of the 

ccantrOas u 

(2*12) evduated dong %be  opt^ trajectory.  

dt 
(t) also mhi.dzes the Rdl.t;an?lan of the original problem 3 

2.5 Relation Between Existence of an Optima3 Solution end Singular 
SoluWm of the Relaxed Problem 

* In many applieatfans it is po8aibabe to  exprerss u as a function of 3 
x and A and when mbertituted into ( 2 ~ 6 ) ~  (2J9) a new problem ar ises  

t ion problem which is l inear  in the cmtroB can have e i the r  a singyltrr 

solution or a solution with the control on the boundary. 

8uppoae a rsyatsm and a performanee index axe deseribecl by a a e t  of 

differential equa;tfone linear i n  the control. Froan the necessary con- 

aftionrP for uptMi%y it is clear tha t  for minf8ljlaing the performance 

index, the opt% eentrol ta*(T) has t o  assume viluear on the bcmdary of 

PI, whgre ubU. I f  the aoaFPicfent tha% xuultipliea P in the Hdl-kcmian 

1 
1 
1 
1 
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01's i s  identically equal to  1, on some t i m e  in ternalp that  means that 

a l l  the other a's are identically zero on this interval  and the original 

problem has a solution on th i s  time intervalQ 

that none of the a is identically equal t o  E and a singular solution 

should be accepted for the relaxed problem, 

The other d t e rna t ive  i~ 

5 
Thus the following theorem 

can be stated. 

Theorem: The relaxed problemhas a singt.iLa.r solution i f  the original  

problear. does not have an optimal. *solutiono 

- Proof: 

problem does not possess an optimal so$utiim. 

sufficient conditions, described i n  section 103 of this tbesie9 that  the 

relaxed problem does have an opt imal  solution. 

controls a ( t ) ,  3 = ls 3 
of C for the whole time internal [O,Tls then one of the cYpss say ozg, 
1 - P  < k C n+l, is identically equal Lo 3 and %he other a's are ident ical ly  

The theorem i s  proven by contraclfctisn. Assume tha t  the or iginal  

1% i s  known ficin the 

If the relaxed optimal 

n-t.9 do indeea assu~lie vailpples on the boundary 

equal, t o  zero fo r  every subinterm of [O,T]. 

then the relaxed problem is reduced to the  original problem, 

is known that the relaxed problem has an optimal solution, so would the 

original problem, but %his is a contr&etisn to the basic assumption 

But i f  Chis  is the case 

Since it 

that the original problem does 

conclusion is that  on a t  least 

the relaxed controls a assme 3 

no% have an optfina9 solutiono 

some t i m e  in terval  t ha t  belongs t o  [O,T] 

The 

values between zero and one, 0 < a. < 1, 
J 

and this case is  singular by definition. 

2.6 Example 2.2 

The following example demonstrates that  for  an optimal control 

problem that  does not have a solution9 the relaxed problem has a singular 
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rsolution. 

1% Ss first rshm t h a t  the given problem does not have an aptima3. 

solution, For olarf-by this problem is called problem A.  

Problem A 

C oneider 

(2.21) 

(2,24) 

then comput%ng the second derivative of H with re8pect t o  us one obtains 

(2.26) 

faaum, eLndl no% a minhum aa reqtrired., 

Therefore, the foUming e m  be stated,  I f  an optimetl control 

does fnaeed e x i s t  for  problem A, it can aasme only the values 0 or 1. 

When the control is u = 1, m e  gets: 

1 
I 
1 
I 
I 
1 
1 
1 
I 
I 
I 
1 
I 
I 
1 
I 
1 
1 
I 



il = x2 4 1 

i, = -1 

ftoln (2.28) 

1 x2 = -t + c 

and f’ra (2.27) 

j4 = -t + c1 + 1 

t2 x 1 = - 2+ ( c l +  I) t + c2 

I t  follows that 

Equation (2.31) describes a set of parabolas. 

For u = 0 one gets 

% = x2 

x2 = constant 

17 

(2.27) 

(2 ,28)  

(2.29) 

In order to show that problem A does not possess 811 optimal solu- 

tion, problem B i s  introduced here, 



18 

Problem B 

Consider 

go = 4 x12 xo(o> = 8 (2.35) 

gl = x2 + u (2.36) q o )  = -2; Xl(T) = -1 

g2 = -u X2(0) = 1; x2(T) - 0.5 (2.37) 

with the same constraint on the control 

o e u g l  
S I  

It i s  shown by Johnson and Gibson [ref. 41 that the optimaJ. con- 
JC * 

t r o l  for problem B is u ( t )  = x2 (t) e 

that problem A does not possess an optimal solution. 

blem A does indeed have an o p t i u  ssluticmd 

that u (t) would assme the v&.Luehs 0 or 1. 

Tow it i s  shown by contradiction 

Asstme that pro- 

From (2,26) it i s  clear 
?E 

Let us compute the difference i n  the two performance indices (2.21) 

and (2.35) for problem A and problem €3, respectively, for the sane con- 

tml u ( t )  out of %et set  of admissible controls, 

Equation (2.219 is  different R.m equation ( 2 b 3 5 )  at times when 

u(%) =I 1 and is the same as (2,351 when u ( t >  = 0, 

From (2.23) it is seen that x2 = constant when u z 0. Alsos when 

u S 1, it is seen fpoa (2.23) *that 

$2 = -1 

or 

dX2 = -dt 

I 
8 
8 
I 
8 
I 
I 
1 
I 
I 
I 
8 
I 
I 
I 
8 
I 
I 
I 
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FTam equation (2.39) it i s  clear tha t  the t o t a l  time for which u( t )  = 1 

~ ~ ( 0 )  - X2(T) = 1 - 0.5 0.5 (2.40) 

Jc 
It follows that for  the assumed optimal control u ( t ) 9  or any other 

admissible c m t m l ,  thatltalres value8 of 0 o r  1 on*, the performance 

indices given by (2.21) and (2.35) di f fe r  by a constant equal t o  0.5. 
* 

It follows tha t  the aeewned optimal control u ( t )  for  problem A 

should be a candidate o p t i & L  aolution also for  problem B. However, it 

was shown by Johnson and Gibson [ref. 41 that  the optimal control for  

problem B is singular and that  u ( t )  = x2 ( t ) .  
* * 

It remain8 t o  be shown f o r  problem B that for  any admissible con- 

t r o l  tha t  only BBS\UIIRS values of 0 or l9 there i s  another admissible 

control that only assumes the values 0 or 1 that provides a performance 

index closer t o  the o p t W  performance index, the l a t t e r  corresponding 

t o  the singular control* 

I n  the following it is shown how t o  construct a control tha t  assumes 

only the values 0 or 1 and which provides a performance index a8 close 

t o  the optimal as is desired. For that purposes consider the foU.owfng 

relaxed problem for problem B e 

1 = - x  xo(o) = 0 (2.41) 
0 2 1  

i r l P X 2 + c r l  + (14) U2' %(O) = -2; Xl(T) = -1 (2.42) 

it2 = - c y  +a) u2; (2.43) 

Choose base controls 
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with the constraint 0 5 a 1. 

According t o  JohnSon and Gibson [ref. 41, the optimal control fo r  

(2044), (2045) and (2046)  i s  

a*(t) = x&) (2.47) 

L e t  the time it takes t o  get from the i n i t i a l  t o  the f i n a l  point with 

the singular control equal TI. 

i b l e  t o  construct e~ sub-optimal control for  problem B consisting of u = 1 

and u = 0 switching according t o  a ( t )  given by (2.47). The control thus 

constructed will not necessarily satisfy the f i n a l  conditions of the 

According t o  Warga [ref .  31 it is  poss- 

* 

problem. 

number of switchings (see figure 2.1). 

Howevers one could get i n to  8 by using a suff ic ient ly  large 

The region S i s  bounded by two 

t ra jec tor ies  corresponding t o  u E 0 and two t ra jec tor ies  corresponding 

to u 5 1, the point D being i t s  right vertex- 

Starting from the i n i t i d .  point the sub-optimal control found i n  

section 2,3, i s  used with N so large that the point (xis xz) arrives 

wfthin the region S o  Once i n  region S, one can get t o  the f i n a l  point 

with at most two switehings. 

performance index is  negligible, since S csn be chosen as small as desjred. 

The contribution of the last  s tep t o  the 

It ell now be shown that the performance index fo r  the t ra jectory 

ABCD of figure 2,1 can be made as close t o  the optimal as desired. 

According t o  Warga, the performance index along the  t ra jectory AB 

is greater than the optima9 by at  most E. *ere el > 0 i s  a pre-set E 
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constant i f  only I? is  lerge enough. Thus, 

PI* - m opt. 5 

T x2 

Figure 2.1. Sub-Optimal Solution for Example 201. 

Wsrga's algorithm is applied t o  t h i s  problem. Divide Tl i n t o  1Q 

equal parts. The kth time interval starts at t = > (k-1) and ends a t  

t = T1 k. For the kth interval ,  apply the control u = 1 for  time '% 

Rl 

where 

* 
and x2 is  the expression for the singular optimal solution evaluated at 

the beginning of the interval i . e . ,  a t  t = N 0 (le-1). 

the interval  A, apply the control u = Oo 

T1 For the r e s t  of 

IT is chosen such t ha t  B i s  

inside S, end PIm - PIopt 5 el. 
the performance index i s  

Along the l i n e  BC the added t e rn  i n  

dtwhere \ and tC are the 
tC tC 

2 x : d t < & S  2 2 2 d t = 2  
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times the state is a t  point B and point C, respeetiwly.  

Frosa (2.32) 

2 = x2 2 0.5 1 

3 We can choose S = S1 so slnall that  given E: 
t, 

Along the l ine CJD the added term i n  the performance index is  

tD tD 53 
2 x t d t < l [  2 2 2 d t = 2  d t .  

% tC tC 

Since for  the path CD 

2 = -1 2 

it follows similarly that  S P S2 can be chosen such tha t  

It  follows that the t i m e  it t b e s  t o  get f'ram B t o  C and from C "3 D 

can be made a small. as desired, by choosing S t o  be the smaller of 

the regions S or S2. 

!rhus 

1 

- p I  < E  + E  + E k e €  mABm opt 1 3 

or 

=ABm - =opt 

and the performance index along the path ABCD using an admissible control 

that  assumes only the values 0 or 1 can be made as c1ose t o  the opthid. 

performace index as desired. If the s ta te  of the system does not fall 

1 
1 
I 
1 
I 
1 
1 
I 
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into the region S at t h e  T1, then it would be necessary t o  we the 

al@rithm for less than TI seconds to  get to the point B, in&@ ,Sa 

Two came should be aonsidered, 

case (I) 0 5  PI^ - PIopt 5 el 

In t h i s  eade the previous argument holds. 

Case ( I T )  PIm .p PI - 8 8 > 0 
O P t  

A8 before 

PIBC + PIo < “3 + €4 

mABm - mopti pIAB - PIopt + PIBC + PICD < - a + €  + E  3 4  

* c3 + 
Deflne e2 

then 

0 < -8 

I t  follows that 

PIASCD 

where e2 > 0 i s  a predetermined 8ma.U. quant2ty. 

Consider the example of problem A -  It i s  now shown that the relaxea 

problem for problem A has a singular solution, 

Consider 

j 4 - x 2 + u  ~ ~ ( 0 )  58 -2 x,(T) -1 

ii2 = -U x2(0) = 1 ; x2(T) = 0.5 

The constraint on u i s  0 5 u 51. 

The solution to (2,48), (2.49) and (2050) is  found by soleng the 

relaxed equations 



24 

(2 51) 

iil - x2 + 0n”l + ( 1 4 )  u2 ~ ~ ( 0 )  -2 xl(T) = -1 (2.52) 

f2 -- - (1-a) u2 x2(o) = 1. ; = 0.5 (2.53) 

with the constraints 

It is necessary t o  consider here only two a ’ s  instead of four, since one 

i s  eliminatedbecause the s e t  of admissible controls U is  connected and 

the second i s  eliminated since the control u appears l inear ly  i n  both 

equation (2.49) and (2.50) e 

The Hamiltonian for (2.51), (2.52) and (2.53) sa t i s f i e s  

Observe tha t  

and 

8 
I 
I 
I 
1 
I 
1 
8 
I 
8 
I 
I 
t 
8 
t 
I 
I 
I 
I 

(2.55) 

~ 

It was shown that equations (24.8), (2.49) and (2,50) do not possess an 

opt- solution. Canparing those ‘equrttions t o  equations (2.51), (2.52) 

a d  (2.53) it Sa thus clear tha t  we require CT # 0 and a # 1. 
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It follows from ( Z 5 5 )  and (&56) that the om3y possible minfslum 

2 

' 1 1  

points are 

Choose 

= OI 3 = 1, ~2 - 0,  u = 1. 

P p l  
u = o  2 

Equathms (2.51, 2.52, 2053)  became 

2 p g % 2 + a  1 
0 

2l - x2 + a 

i = - C Y  2 

Define the Hdl ton ian  

1 + a + A 2 1 .  1 2  H = - x [x + a] + h3(-a) 

men 

i, = -5 

and 

1 i2 = -A 

U s i n g  the notation of [refo 43, we have 

1 2  
2 1  

1 + Al - A2 

+ Alx2 119-x  

F 

(2059) 

(2.60) 

(2.61) 

( ~ ~ 6 2 )  

We now seek a singufsr solution of the problem defined by equations 

(2.57), (2.58) and (2.59) together with the in i t ia l .  and f i n d  conditions 

F a 0  + A 1 3 h 2 - 1  (2.65) 

(2 066) 



3E =I 0 4 x (x +a) - %X2 - Ala = 0 1 2  

* 

Substitute (2.68) into (2.67) 

x x  + 2 = 0  
1 2  Z X l  

(2.69) provides the aringdlar segments. 

From (2.69), (2*58) and (2 .59)  one gets  

* a = x2 

* 
Using ~1 = 1, % = 0 and a = x2 one can construct 8 sub-optiglril control 

for problem A. 
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(2.67) 

(2.68) 

(2.70) 

I 
I 
I 
1 
I 
1 
1 
1 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 



8ENSITIVITY IN comm THEORY 

3.1 Introduction 

Sensitivity considerations play an important role in the design of 

One of the major reasons for using feedback automatic control systems, 

for systems is to reduce sensitivity to plant parameter variations and 

external disturbances. 

consideration in classical control theory is giveno 

In this chapter a brief review of sensitivity 

Some work is repor- 

ted on zero sensitivity systems, and zero sensitivity o f  relay systems 

is discussed when the system is in the chattering mode, 

The classical definitions of sensitivity are extended to the field 

Since the formulation of the deterministic optimal of optimal control, 

control problem does not normally take sensitivity into account, it is 

necessary to consider sensitivity separately, 

solved by Holtzman and Horing is discussed. 

3.2 Sensitivity Considerations in Classical Control Theory 

One of the main reasons for employing feedback in automatic con- 

Finally, an example 

trol systems is that it has the ability to reduce sensitivity of the 

performance of the system to plant parameter variations and to external 

disturbances. 

system parameter values generally differ slightly from the computed 

The study of sensitivity analysis is important because 
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ones. 

the real systems. Also most systems contain components t ha t  change 

their values with time because of aging and wearing. A survey of re- 

search on sensi t ivi ty  of automatic Control systems is  given by Kokotovic 

and Rutman [Ref. 165. The basic concepts of sens i t iv i ty  appeared i n  the 

fundamental work of Bode [Ref. la which was  the beginning of the modern 

theory of feedback systems, One would have expected tha t  automatic con- 

t r o l  theory would include the study of control system sensit ivity.  

However with a few exceptions l i ke  the books by Trwcal [Ref. 181 and 

Mathematical models of systems are idealized representations of 

, 

Horowitz [Ref. lg j ,  the question of sens i t iv i ty  did not even find a 

place i n  the texts on automatic control theoryo 

Trucal's definit ion [Ref, 181 of 

The sensi t ivi ty  of an overall gain or 

a given parameter k i s  defined by the 

T dLnT Sk = 

Equation (3.1) can be written as 

sensi t ivi ty  is summarized below. 

transmittance T with respect t o  

equation 

The sensi t ivi ty  of T with respect t o  k is  the percentage change i n  T, 

divided by that  percentage change i n  k which caused the change i n  T, 

with all changes considered infinitesimally smalls 

derivatives are  involved i n  the definit ion of sensit ivity,  the sensi t i -  

Since only the first 

v i t y  i s  a measure of system characterist ics only f o r  very small changes 

i n  the parameter, 

does not guarantee tha t  higher derivatives are also small. 

Speciffcably, the f ac t  tha t  the sensi t ivi ty  is small 

I 
I 
1 
I 
1 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 



3 -3  Sensit ivity of Variable Structure System 

Variable structure s y s t e m  are  autolp18tSc control s y s t e m  in which 

.. the structure and the parameters of the controller chgnge i n  corre- 

spondence with a chosen logical law as Punctions of the s t a t e  6f the 

system. 

Variable Structure Systems were investigated by Bermant, Ehelyanov 

me properties of feedback systems i n  the s l iding and Taran [Ref. 201. 

s t a t e  were examined. 

Consider the system describeil by the following block diagram 

(Figure 3.1), where W is  the plant to be controlled an8 W is  an 

equalizer. 
&; 

Figure 3.1 Relay 

A s s u m  that 8 "  c ci 
i=o 

Feedback System 

i 
*l 

at 7 

where the G are constants. Also assume tha t  sl iding as defined below 

doe8 indeed occur. Sliding is defined as the si tuation when g osci l la tes  

around the value zero with in f in i te ly  large fYequenc7 and infinitesimally 

s m a l l  amplitude. 

i 

I n  t h i s  caae it can be assu~lleU [Ref. 201 tha t  
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(3 *4) 

Assume tha t  the dffferent idt  equation (3.4) f a  stable,  and t h a t  
dn-2 dx. X, “ >  I x( t )  = cox (XI$ 9 * e r a  &P2 

and 

3e 
Thus, if x1 (t) is the soPution t o  equat%on (304)9 an in, tfal  condition 

x(0) W i l l  be transferred t o  the origin foUowing x (t), independent of 

W. 

na-bely that of  x (t)$ with no dependence on the plant We 

conc1uded that t he  trarmient response of the system, when it is i n  

sliding, is insensj.itive t o  @at papaxaeter vet;rfa%jlon of the plant W. 

3.4 Definitions of Senssitfvlty i n  Optimal. Control 

ClassfcaS sens i t iv i ty  has recen-bly been employed by Dorato [Ref‘. 91 

* 

As long as sl iding exis ts ,  the motion of x ( t )  wiU follow approxi- 
x 

It is thus 

who discussed the senzsftlvit;y of the perfommuce index fn the  o p t i d  

con3rol problem with respect t o  plant parameter variations. A method 

w&s outlined for  computing the performance index sens i t iv i ty  functions, 

A general system was consideredo 

ii: = f(X,U,W) 

where x = COP (5, x2, - e *  , xn) 

u = col (“19 U2’ - * e *  urn) 

and W CQ% (Wl, W29 0 0 0 9  wp) 

where ui are controls and w are psraaeters of t he  system. 3 
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A performance index t o  be minimiGed was 

T n 
S = J F(x,u) d t  

It was assumed tha t  an optimal feedback solution exists i n  the form 

uO(t) = *(x,wo,t> (3 JO) 

where wo i s  the nominal value for the plant parameters* The closed 

loop system dynamics were described by 

li: = fCxr e(x,w*,t),wI 

with a corresponding performance index value S(wo,w), 

due t o  plant parameter variations were represented by 

Variations i n  S 

A8 = 3(w0,w) - s(wo,wo) (3 012) 

3.5 Discussion of an Example Given by BsLtwaan and Horing [Ref. 141 

Given xo(o) = 0 (3  013) 2 k = u  
0 

k,. = + bu XI(') = xo 5(T) = XT (3 *14) 

* 
Find an optimal control u (t), 0 5 t 5 T, tha t  wild, minimize xo(T), 

where T is fixed 
rn 

Define sensit ivity 

S =  

J 
0 

for this problem as 

q T )  - 
6a = da 

The approximation of the sensi t ivi ty  by the derivative da is  

valid for sma31 values of 6a when higher order terms can be neglected. 

An equation i s  derived to measure the sensit ivity.  From (3*14) 
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Take the derivative of (3.17) with respect to a. 

(3 .la) da 

"Pe the derivative! of 

Define 

and rewrite equations (3-13) and (3014) to get a se t  of three equations 

XJO) = 0 (3.20) 
2 f = u  

0 

2, = a.~ a * bn xl(o) Z8 xo = XT (3.21) 

f 2 = a x  2 3 . .  Q X  ~ ~ ( 0 )  0 5 xg(T) = S (3,221 

x2(T) = S i n  (3d22) puts a constraint CXI the sensi t ivi ty .  

solution w i l l  have sensi$fvity equal t~ S. 

The optimal 

The optimization problem given by (3,2O), (3.21) md (3,22) w a s  

solved, [Ref. 141. It was asswed %hat b = 9.0 wii T = loo. 

I n  the formulation given abQ.9tFEs S egauLdl be chosen to be aay real 

number. For S = 0 one would get an optimal control and t ra jectory with 

zero sensit ivity with respect to a. 

leading since it was shown i n  the paper that for S = O, d i f ferent  per- 

fonaance indices resu l t  for a i f ferent  v&uee of %he parameter a, which 

is ca contradiction t o  zero s e n s i t i d t y ,  as discussed below. 

However t;Plfe conclusion i s  &S- 
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Figure 3.2 PI as a Function of Sensitivity 

As seen f’ran Figure 3 * Z s  for zero sensit ivity case S = 0 a perfor- 

mance’index of 40 i s  obtained for a = -10 while a value of PI = 6 i s  

obtained for a =: -1.0. 

caputed for  a = -1.0 for  the case a -- -10, anti thus achieve a lower 

perfonaance index. 

s e n s i t i d t y  for  a f i n i t e  perturbation 

derivative 7 neglecting higher order ternsD 

I f  indeed S 5 0, one could use the control 

The results are misleading because of the fac t  tha t  
6x1(T) 

was approximated by the 
kl(r) 



CHI1P"PER FOVR 

Two examples of lafnfmuBl sene3ft.Pvity optfaaal control are presented 

I n  the first example a sub-optimeL9 open loop chattering control here. 

is made a funetPon of' the s ta tes  and thus becomes a feedback control. 

In this configuration the system will fo3.10~ approximately the optimal 

tradectory even when there are mall perturbations in the i n i t i a l  states. 

In the second example relacedl variational techr13x.pea~ are applied t o  the  

construction of a sub-optiaal control to minimize sensitivity of a 

trajectory t o  per tuba t ions  En ini l ia% c ~ ~ ~ ~ ~ Q E L s ,  

$xlapLs 4.3.. Gurmm0s Problem. 

The follawing example was eom%de~ed by Gum- [ref 81 In his 

workp the sliding state of the angle of attach of an'ailplane is  con- 

sidered. 

tro a f inal  st,ertc i n  mfnbatm time. 

the height, velocity and rcrndqae between the SongitudhiL a x i s  of the 

airplane and the horizoqtal plme. 

a s t a t e  variable constraint 

It is desired t o  transfer the airy$ane From an i n i t i a l  s t a t e  

The staka of the sy~s8em consierte of 

It is &own that  in oraer t o  satis- 

1 2  
3 -  5 % -  

where P 1s the density of the atmosphere a d  T $8 the velocity of the 

drglans, a sliding regime results. 

optimal control for the problem that Uoes not possess an optimal solutbn 

me sliding control is a sub- 
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In this example it is shown that  the control when it is  chattering, 

uan be qresrsdl as a fbnction of the s t a t e  of the watem and of the 

optimal t ra jectory of the relaxed problem. It i s  sham how t o  choose a 

switching function such t h a t  the control chatters while leading the 

system along the t ra jectory that satisfies the given s t a t e  variable 

constraint. 

!Phe eqwtionrs of the motion of the system are [ref. 81: 

& . r v s l n 6  h(O) - ho h(T) = hYf 

where 

: control 

drag 

cL 

X 5 X[h, V, 51: 
% = cD(cL) : drag coefficient 

Y = Y[h, V, CL]: 

k : height 

l i f t  

V : velocity 

e : angle between horizontal plane and the 
longi%udina3 a x i s  of the airglane 

f : gravity constant 

: radius of the earth R3 
The control CL is constrdned 

where C and CL are given constants. The trajectory mst sa t i s fy  a 

constraint 
LI 2 
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where p(h) is the density of %ha atmosphere. It is shown [ re f .  81 that 

for some given i n i t i a l  and f i n a l  conditions the l idt fng  optimal tra- 

jectory includes the path 3 P v 1 2  
= &. 

This example i s  concerned only with that pa r t  of the optimal tra- 
1 2  j e c t o r y  t ha t  s a t i s f i e s  the state variable constraint  3 p v  = 

Choose i n i t i d  etnd f ina l  conditions that belong t o  t h i s  pa r t  of the 

Since every par t  of an optimal *trajectsry tha t  satisfies 3 P T = 

optimal trajectory 18; aLss o p t W ,  it foU.ows that the new problem with 

1 2  

.the new set of f n i t i &  and find. eondlftiones h m  an ogtfmaJ. solution that 

sa t i s f i e s  z p  Y = be 
conaftiolzss sa t ia fy  the constraint 5 PPT 

follow a trajectory that aatisfielrr the same constraint. 

It 1s mmmed hare that the @veri i n i t i a l  1 2  

eund that it i s  deaired to a 2  
= %m 

A chattering 

feedback control w i l l  be found for this problem. 

where S is the area of the wings and m is Yne mass of the airplane. 

Substi tutingX and Y in to  equation (4.1) one obtains 

i; = v s i n  e 
+ = - - 2 P 

a 2  1 s e, E - f sin e 

From Perkins and Bage [ref, 2k1 pp. 94, k81 
.. 

(4.2) 

I 
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where P is the density of the atmosphere a t  sea level. 

sion i s  approximate and holds only for  ralwts of h that satis*: 

1-22.6 loo6 h > 0 

The last expres 0 

Assume that t h e  lift is approximately 10 f when CL = 1 

1 1 2 
2 0 . o  
- P v s ; = 100 n/see 

- l _ < c L s + l  
vo - 100 m/sec 

a and neglecting the term Y /R compared t o  f ,  ( b e $ )  becomes: 3 
1; I T s i n  e 

3 =  -2.5 (1 -22.6 10 -6 h) 403 v 2 - 
-6.10'' (1 - 22.6 * loa6 h)403 v2 C t  - 9.8 s in  8 

v CL - 9.8 cos 01 

(4.3) 

1 -6 4.3 2 6 = - [0.01 (1 - 22.6 10 h) B 

Assume the given constraint to be 

2 
P v - C 3322 m2/sec2 (4.4) 

(8c04a) 

and that  the i n i t i a l  conditions (4.5) seztfsfg equation (4.4a) 

- P  1 v 2 = 3322 m2/sec2 

4 h(0) = 10 zaeters 

v(0) = loo m/sec 

0(0) 5 0.0 rd .  
I 

It is desired t o  construct a feedback control t h a t  w i l l  transfer 

systen (4.3) from its i n i t i s l  s t a t e  ( L 5 )  along the t rdectory satisfyhg 

A switching function g(h,v,6) has t o  be chosen such that 

(4.5) 
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where a =  22.6 0 iopb 

b = 3322 

But P r a  equation. ( h03) 

(4.9) 

(4F.12) 
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SubstitutiG (4-8) into (4.12)'yields for C: = I, ( i t  was s h m  i n  

Substitute (4.33) into (4.13) to obtain 

sin e [V 2J5 si; a (1 - ah) -3015 $. ~ ~ 8 1  = -2082j7 

Bin 8 = -2 0 8237 (4*14) 
2.15 ~ f i  a (1 - ah) -3015 + 9.8 

BY aeflniticm 6 in ( 4 A )  is Ox 

(4.15) -2.8237 sin 6B = 
2.15 Jir a v (1 - + 9*8 

The constbt  K in (k7) is chosen l e g e  enough t o  8atisfy 

ban (g) = - agn (4x1 (4.16) 

Assume the control i s  

(4.20) 
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K can be Wsen large enough t o  satfsfg. t h ~  eonditfcm (4.16), 
2 I n  OwT exaqle K tD 100 a /see2 ma used ana the result was a 

chattering contwl, CLs between -1 and +P leadfng the state of the system 

close t o  the state variable eanasfrdnt (4.4er) The maximurn deviation of 

4.1. 

When another switching flme%ion g 
2 g GI v (1 - ah)4e3 - b 

was usedl, the carntrol did not chatkaer and the trdectory regulted in  a 
2 deviation of 4 . 6  for 5 P v fium the de8irerd value of b ,  The controF 

and trajectory are given in table 4.a0 
0 

It remains to be s B m  that the only possible solution to g = 0 

g = v 2 (1 - ah)403 - b - K (@-OH) 0 (4.22) 

i s  

v2 (1 - =: b 

or 

(4.23) 

(4.24) 

(4.e5) 

(4.26) 



41 

0 g 

0.0 0,o 

Table 4.1 Chattering Control an$ Trajectory f o r  Example 
4,1 when g = v2(l.-ah) p 3  - b - loo(@-$) 

1 2  % - Pv -3322 
PO 

1,o 0.0 

t 

0.0 

0.1 

0.2 

00 3 

0.4 

0*5 

0.6 

0- 7 

0.8 

0.9 

10 0 

1.1 

1.2 

1.3 

1*4 

165 

-0.29 

-0.27 

-0.25 

-0.30 

0 ~100.0 

-3.0 8 -1.0 0~63 

2,3 L O  0.46 

0.4 1.0 00% 

-0.5 -LO 2.17 

-2.6 I 99.97 

-0~26 

-0.32 

-0.28 

-0.26 

-Oo24 

-5.3 I 99995 

5.5 L O  2* 82 

-0.5 -LO 0.52 

9.5 L O  4* 88 

4.0 L O  3.22 

3.9 L O  50 18 

-8.0 I 99.94 

-20.0 

-22.0 

-25.0 

-27.3 

-30~ 1 

-11.0 

-13.6 990 93 

99.93 

99.88 

99-90 

99.85 

99.84 

-16.2 1 99.89 

- 0 ~ 2 9  

-0.25 

-0.31 

- 0 ~ 8  -1.0 20 93 

5*2 L O  3.47 

-1.6 -LO 0,48 ,, 

I 
I I I 

1 I I I t 
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Clearly, equation (4.26) differs  in form ficaa equation (b03).- It 

is therefore expected tha t  the ~ o l u t i o n  of (4.26) together with the 

first two equations of (4.3) are not solutions of (k03). 

Example 4.2 

In the fol3.owing example the theory of' Relaxed VariationaJ. Problems 

is  applied t o  a problen of minimizing s e n s i t i d t y  of an optimal tra- 

jectory t o  variations i n  i n i t i a l  condftions. It is demonstrateU that  

relaxing the end conditions allows for  a sub-optimal control that  

resul ts  i n  a lower performance index than the optimal perfommee index. 

Given 

xo(o> = 0 (4.27) 4 go = 100 x: + 0-25 u 

5" ( u - 5 )  3 xl(0) = 0 (4.28) 

9 2 = -3(u - %I2 x2 x p  = 1 (4.29) 

= 5 2  g(0) = 0 ; 5(0.1) = I) (4.30) 
=% 

It is desired t o  find a control u et) such tha t  minimizes xo(T), 

where T = 0.1 is the termin& time. 

Eqnertion (4.28) is  the plant equation, Equation (4.30) forces a 

constraint on the trajectory. . 
%(t)  s 0 (4.31) 

Equation (4.29) is a lineasized prturba%fcm equation for equation 

(4.28). 
ar(U-xl) 3 3 

6---%-- 
(4.32) 

(4.33) 2 6 iil = -3 (U - x ~ )  8 xl 

Defining "2 4 8 5 reduces equation $4.33) t o  equation (4.29). 

It is assumd tha t  there Illight be a perturbation of magnitude 1 i n  
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the i n i t i a l  condition and thus 

x2(o) = 1-0 

The optimal control problem thus formulated w i l l  be called the 

original problem. 

u (t) Z 0, that transfers the i n i t f a  s t a t e  t o  the f lnal  state and is 

therefore also the optima1 control fo r  the problem, 

Frcarp equation (4.30) it is elem that x1 

The original problem has cmly one admissible control, 
3c 

0 and from (4.28) 

2(t) = 0 (4.34) 

The o p t f a  performance index considering %2 = 0 from (b029) is 

~~(0.1) = f" 100 d% = LO (4.35) 
0 

The relaxed. control problem WfU be defined and solved below. 

w i l l  be shown tha t  the psrf-ee index for  the relaxed problem is con- 

siderably lower than the one for the original problem. 

control wlth a f in i t e  nmbsr of mitchfngs wiU be constructed for  the 

origindl problem and it ' w i l l  be s R m  that the perfomnce index thus 

obtained is s t i l l  considerably lower than the optimal. 

It 

A sub-optimal 

'phis w i l l  be 

by sacrfji"fefgg the! terminal constraintso 

Define the relaxed equations for (4.27), (ko28), (4.29) and (4.30). 

It is deafred t o  minimize xo(S) where T 5 011 i s  the termin@& time. 

Froma the fourth equa*ion and frm i n i t i a l  and f ina l  values- i t  is 

I 
I 
I 
I 
1 
I 
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Clem that 24 3 0 and that J1 = 0, AppXying the Minima Prigciple to 

If any one of the a'8 i s  zero, 5 - 0, a - 0 or ( 1 ~ 4 ~ )  = 0, 2 
then the &ciblem reduces to the problem discussed below equation (4.36) 

yith only two a*sO Assume none of the a*s is zero, then applying the 

necessazy conditions the following must hold 

3 = a  5 2% - x2 "2) = O 
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If h2 X2 g 0, 3 3 uz * 3 = 0 is  the only solution. Assume 

A x > 0, then 2 2  

a% zp-6ch2x2<o 
I 

for ~1 = 0 and 

and for - with the r e su l t  The same can be done for  7 a% 
au2 

"1 = t  

u * = +  d-2 2 -  

and Y* = +  - 
It is clear that a% l e a s t  two out of the three controls y, ~ 2 ,  and 

u have to be identical ,  therefore it i s  sufflcfqnt t o  uee only two con-' 3 , 
trois t~,. and uz and twopgs, a and (14)- This is sham i n  equation 

It is desired t o  minimize xo(T) where T = 0.1 is the tel7aPina time. 

Applying the Wninsum Principle t o  %his problem we find that the 
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Hamiltonian satisfies 

thus 

Frw the fourth equation of (4.36) it foUows that 

x p o  (4.38) 

and f'rcm (4.38) and the second equation of (4,36) it follQDpa that 

a %3 + (14) u: - 0 (4.40) 

Using (4.38) and (4.40), the H d l t o n i a n  (4037) can be rewritten. 
4 H - 100 x t  + 0,25 [a y4 + ( l a )  u2 3 + 

Applying the necessary conditions the f'oUowing must hold. 

(4.41) 

(4.42) 

A similar expression can be written for the partfa9 derivative o f H  

with respect t o  u2' 

Two cases are t? be considered for (4*42) 

The case when a = 0 is of no interest ,  since i n  this case the 

relaxed equations (4 4 6 )  reduce t o  the original equatdons (4.27), (4.28), 

(4.29) and (4.30), and Chat problem was already solved with 
* *  

u m u  = o  2 
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Case11: a f o  

and 

u,.~ - 6h2 x2 ~1 - 0 (4.43) 

The solution to (4.43) is  

P I 0  
when he x2 > 0 

(4.44) 

(4.45) 

(4.46) 

Assume h2 x2 > 0, wRicR turns out t o  be the case i n  the numerical 

solution, and compute the second partial derivative of H with respect 

(4.47) 

3% - a - 6CX h2 x2 < 0 (4.48) 

for y = 0 

Thus if A2 x2 > 0, 

(4.49) 

(4 50) 

1 
I 
1 
I 
I 
I 
I 
I 
I 
1 
1 
I 
I 
I 
I 
1 
I 
1 
I 
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and 

are ninimum points for the Hamiltonian, and 5 = 0 is a noaxinnun point 

and is therefore discarded here. 
* If h2 x2 were negative, u = 0 would have t o  be used. 

The same argument start ing with equation (4.,42) can be repeated for 

u2 with the  results 

u2 * 3- 
ana 

Choice of Signs of the  Control 

It is now shown, that if % is chosen t o  be positive 
* 

* 
then u2 has t o  be chosen t o  be negative 

l5.*= -- 
This is shown by eontradiet%on. From equation (4*40) 

Assume ~1 .k = U2 * ,/- then 

Since /- # 0, it follows 

a + (La) = 0 

which is  a contradiction. 

Computation of' a! 

From eqwtion (4.40) 

(4.53) 

(4.54) 



a t 3  + (La) u2 3 =  o 

Choose 

9 - 6 3  
and 

u = r - J g - - -  2 x2 

Substitute (4*56) and (4.57) into (4.55) 

Since ,/vi # o for o 5 L < T, it follows 

a - l + a = O  

a =  O05 

The Adjoint Equation 

Fram (4.41) one gets 

Substitute 

C X =  0.5 

t o  get 

g2 = - 200 x2 + 18 x2 

From the third equation of (4e36) and (4*38) 
2 2 ii = -3x2 [a un + ( L a )  u2 1 2 

Substitute (4.61) in to  (4.63) t o  get 

2 
A2 g2 = -18 x2 

50 

(4.55) 

(4.56) 

(4.57) 

(4.58) 

(4.59) 

(4.60) 

(4.61) 

(4.62) 

(4.63) 

(4.64) 

Thus the fo l lming  two point boundary va;llue problem i s  t o  be solved. 
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Equations (4,62) and (4.64) are recopied, 

x2(o) - 1.0 (4.65) 2 = -18 he x2 

A2(0.1) = 0,O (4.66) X, -200 x2 + 18 h2 2 x2 

Ther f i n a l  condition for b2 is obtained f r o a n  the transveksality 

condition, noting that 3 at the terminal tfne is free. 
Once equations (4.65) and (4e66) are solved, the performance index 

for the relaxed problem can be carmputed f'rom the first equation of (4.36) 

(4.67) ii: = 100 x: + 0025 [a 94 + (la) u2 4 I 
0 

Substituting (4-61) into (4.67) results in 

(4.68) 2 2  ii: = 100 x22 + 9.0 ?be x2 
0 

Numerical Solution of the Two Point Boundary Value Problem 

A GraAient Technique was employed for the solution of the two point 

boundary vrilue problem, equations (4,65) and (4.66) 

W o  adjoint equations w e  constructed for (4-65) and (4.66) 

a 2 6 i2 = - 1-200 x2 + 18 A2 x,] 6 x2 + 
&2 

2 
E-200 x2 + 18 h2 x ~ ]  8 h2 

(4.69) and (4.70) become 

8J2=-36h X * 8 x 2 - 1 8 x 2  2 0 8 A 2  
2 2  

2 8 i2 = (-200 + 18 h2 ) 0 6 . .  x2 + 36 h2 x2 0 8 A2 

Define y1 = 8 x2 

Y2 = 8 

(4.70) 
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then ( 4 . n )  and (4.72) become 

Y1(O.1) = 1.0 (4.73) 

The i terat ive technique works as follows. A guess is  made  for 

~ ~ ( 0 . 1 )  i n  equation (4.65). 

are integrated backwards i n  time, from t = 0 . 1 t o  t = 0. 

is made for the new guess ~ ~ ( 0 . 1 ) .  

Equations (4.65), (4*66), (4.73) and (4.74) 

A correction 

1 A ~ ~ ( 0 . 1 )  '7 [ l e 0  - x2(O)] 
y1 O 

(4.74) 

Convergence using th i s  technique is  fast and i s  obtained i n  about 

5 i terations,  

Results 

For the original problem, the performance index obtained was (see 

equation (4.35)) 

xJ0.1) = 10.0 (4.76) 

The performance index obtained for  the relaxed problem was  

~~(0.1) = 2-75 (4.77) 

The l a s t  figure shows a significant improvement of the performance 

of the relaxed problem over the performance of the original problem. 

For the original problem it i s  possible t o  come close t o  the optimaJ. 

performance index of the relaxed problem by applying a sub-optimal 

control t o  the original problem. 

the original problem using 100 switchings a performance index of 

When such a control was applied t o  

~ ~ ( 0 . 1 )  = 2.82. 

was obtained- The f ina l  value of x was  
3 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
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x 3 ( ~ . l )  = 0.6 . 10-3 

The sub-cptinwl control shuws a great improvement compared t o  the 

original performance inaex for the original problem, and a degradation 

of only 2.5$ capared t o  the ideal performance index of the relaxed 

system. 

When only 10 switchings were allowed for the sub-optimal control, 

a performance inaex of 

~ ~ ( 0 . 1 )  - 3.03 

w a s  obtained. The f i n a l  value for x was  x (0,l)  = 0.032. 
* * 3 3 

Figure 4.1 shows the relaxed controls y. ( t )  and ~2 ( t ) ,  and the 

sub-optiW control for  the original problem, ccmsisting of only 10 

switchings. 

the relaxed problem and x,(t) obtained fo r  the original problem with 

the sub-optimal control t h a t  is shown in Figure 4.1. 

Figure 4.2 shows a comparison between x2(t) obtdned for 

Game Theory Approach t o  the Problem 

It was assumed before that the error i n  the i n i t i a l  condition, 

x2(0), was 1. 

t o  minimize sensit ivity with respect t o  an unknown i n i t i a l  perturbation. 

In general the error i s  not known and it is  desirable 

The following question arises.  Is it possible t o  find the optimal 

control for the worst error, x2(0), when x2(0) is limited, say between 

0 and +lt 
, 

0 - c x2(o) 5 1 

For this example three values of possible errors were assumed. 

I. x2(o) = 1.0 

11. ~ ~ ( 0 )  = 0.5 

111. x2(o) = oeo 



Relaxed "Suboptimal 

5 t" 
4 h / uI Relaxed 

1" Suboptimal 

T I 

- 4 H  

-5 t 
FIGURE 4.1 RELAXED CONTROL AND SUB-OPTIMAL 

CONTROL FOR EXAMPLE 4.2. 
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AND 1t2 
Re1 o xed FIGURE 4.2 COMPARISON OF x 
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FOR IO SWITCHINGS. 
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x2( 0 )=la 0 

2.75 u computed 
for  x2( 0)=1. o 

For every one of the three cases, the corresponding optimal con- 

x2 (0 )=O .5 x2 (O)=O . 0 

1.53 1.12 2.75 
min-max 

t r o l  was found. 

three times to  the relaxed system for  x2(0) = 1.0, x 2 ( 0 )  II 0.5 and 

x2(0) =L O.Oa Thus the experiment resulted i n  9 different values of the 

performance index. 

Each one of the three optimal controls was applied 

These were tabulated i n  Table 4.3. The first row 

3.46 u computed 
for x2(0)=0.5 

Table 4.3 Minimax Solution for  Example 4.2 

1.15 0.39 3.46 

u computed 
for x~(o)=o.o 10.0 

I I I I 
I I I I 

2 05 0.0 10.0 

2.75 
mais-min 

1.15 0.0 

i n  Tabre 4*3 &nkIsts&$ fihe*kdues of the verfonnance index where the 

optimal control for case I was applied t o  the relaxed system with 

x2(0) = 1.0, x2(0) = 0.5 and x2(0) = 0.0 respectively. 

row the control computed for  case I1 was used, and for the third row 

the control ccmputed for  case I11 was used. When min-max and max-min 

vaLues are computed for the rows and the colwns of Table 4.3 it is 

For the second 

clear that  

The corresponding control i s  the optimal control computed for case I. 
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Thus in the sense of-game theory, %(O) = 1*0 is  the worst in i t ia l  

perturbatim out of the three possibilltiea %(O) = l o o ,  I,@) = 0.5 

an& x2(0) = 0.0, and the corresponding control i s  the best control. 

Thus, i f  it is known that the possible perturbations f o r  the 

initiaJ cadit ion,  x2(0), can be either x2(0) = l . O s  x2(0) - 0.5 or 

%(O) = 0.0, then one should me the control cmputed for $ ( O )  = 1.0 

and in  the worst case the performance index for the relaxed problem 

< 

w i l l  not be greater than 2.75. 



CwlpTER FIVE 

S U W Y  AND coNcLusIoMs 

5 . 1  SUBXWTY 

Relaxed Variational Techniques were applied t o  a minimum 

sens i t iv i ty  control problem. The problem does indeed possess 

an optimal solution but it i s  possi‘ble, a t  the sacr i f ice  of not 

satisfying the f i n a l  conditions exactly, t o  obtain a considerably 

be t t e r  performance using a sub-optimal control. The sub-optimal 

control i s  constructed using the optimal controls of the relaxed 

problem. 

the  application of the  relaxed controls t o  the construction of 

the sub-optimal control 

An example of minimum sens i t iv i ty  was shown demonstrating 

It was demonstrated by an example tha t  a sub-optimal chattering 

control obtained for a minimum time problem can be made a function 

of the s ta tes  of the system and thus minimum sens i t iv i ty  t o  

perturbation i n  i n i t i a l  s t a t e s  i s  achieved as well a s  minimum time. 

A re lat ion w a s  shown t o  e d s t  between relaxed problems and 

singular control. 

an optimal solution has a singular relaxed solution. 

5.2 Suggestions fo r  F’urther work 

It was shown tha t  a problem t h a t  does not possess 

It was shown tha t  a problem tha t  does not possess an optimal 

1 
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I 
I 
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1 
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1 
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t 

I 
I 
8 
I 

solution has a relaxed singular solution. Thus,. i n  order t o  f ind  the 

sub-optimal cantrof it is necessary t o  solve a singular control prob- 

lem. 

niques suitable for  solving optimal control problems tha t  have 

singular solutions 

It seems therefore important t o  find e f f ic ien t  numerical tech- 

I n  example 2.2 we saw tha t  by a proper choice of the f o A  of the 

performance index one can get a problem t h a t  has an optimal solution 

{if the performance index is quadratic i n  x and u), c+ singular solu- 

t ion  { i f  u does not appear i n  $he performance index) or no solution 

a t  a l l  (as i n  example 2.2). It seems l ike ly  that singular problems 
L *  , ‘ I  

are a borderline case between problems that possess optimal solutions 

and problems that do not have optimal. solutions. Further research is  

needed i n  t h i s  area. . .~ 

Sensit ivity i n  example 4.2 wds defined for  a specific case. It 

would be an important contribution t o  find a control that wuld be 

optimal for  arbi t rary f n i t i a l  perturbation. 

I .  
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